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ABSTRACT 

Using dispersion relations and the properties of Herglotz functions 

we study solutions of two-Pomeranchukon unitarity in the presence of 

CDD zeroes. We conclude that the best solution is that in which two - 

CDD zeroes are present and the triple Pomeranchukon vertex vanishes 

linearly. This structure leads to the factorization of cross sections to 

or i 1. 
(1nsj2 
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The most powerful way of solving Reggeon cut discontinuity 

formula for the Pomeranchukon 1-3 
should be the field-theoretic 

approach of the Reggeon calculus. 
4 

This is because the infinite 

set of coupled discontinuity formulae for all the multi-Pomeranchukon 

cuts are treated simultaneously. In fact this is probably the only 

way of obtaining a strong-coupling solution 5’ ’ in which all the cuts 

contribute in a similar fashion to the total cross section. However, in 

the weak coupling case, where the cuts remain separable from the 

pole at t = 0, the critical problem is the collision of just the two 

Pomeranchukon cut and the pole which involves the three Pomeranchukon 

vertex. For this reason it is actually more straightforward to discuss 

the weak coupling case using S-Matrix methods. 

A basic treatment of this problem was first given by Bronzan. 7 

His approach is to study possible analytic forms for the Froissart- 

Gribov amplitude which contain a self-consistent Ponnranchukon pole and 

are consistent with both analyticity in t and the N/D form required 

by the two Pomeranchukon discontinuity formula. In this paper we 

use a different approach and obtain solutions which have a different 

zero structure to those given by Bronzan. Our approach is based on a 

combination of dispersion relations with the properties of Herglotz functions 

and is closer to that of Abarbanel, 
3 

except that we allow for the presence 

of “CDD” zeroes which are critical for obtaining a satisfactory solution. 

Our conclusion will be that the best solution is that in which two CDD 
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zeroes are present. This requires the triple Pomeranchukon vertex to 

vanish linearly in the forward direction. This is the solution recently 

‘8 
obtained by Cardy and White m the context of the Reggeon calculus with 

an effective singular potential. In that context one CDD zero can be inter- 

preted as the triple Pomeranchukon zero resulting from the singular potential, 

while the other is interpreted as the “bare” Pomeranchukon pole trajectory 

before its interaction with the two Pomeranchukon cut. 

We consider therefore the t-channel “on-shell” Pomeranchukon- 

Pomeranchukonpartial-wave amplitude A j,t;tf =t2,&i) +a(t2)=j+i) 
i 

E A(j,t) (see Fig. 1 for notation). We shall ignore the structure of this 

amplitude in the ti and t2-channels and in the t-channel consider only 

the Pomeranchukon pole at j = cu(t) and the associated two Pomeranchukon 

cut at j =cuc(t) = 2@(i) - 1. We assume that we can write a dispersion 

relation for A (j, t ) in j for fixed positive t, in the form 

ImA(j’,t)+C (1) 

-@a 

where the residue of the pole is the square of the full triple-Pomeranchukon 

vertex which we shall assume to be pure imaginary. 
+ 

C is a subtraction 

constant which we shall initially take to be zero but will later find to be 

essential. Note that the positive sign for the cut contribution in (1) 

corresponds to a negative contribution of this cut to the total cross 

This is a well known result of the Reggeon calculus and is a consequence 
of the requirement thatthe two Pomeranchukon cut be negative in lowest 
order Reggeon perturbation theory. 
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section. 9 The two Pomeranchukon discontinuity formula requires that 

A(j, t) satisfies the unitarity relation 

ImA(j,t) = p(j,t)[A(j,t)12 (2) 

where the kinematical factor p (j, t ) is essentially given by 

d.i,t) = PI($),, =t 
0 

(j) (3) 

t,(j) being the solution of j = 2a(tO) - 1 and p is a function of j, which 

can be treated as a positive constant. 

It follows from (1) that ImA(j,t) 2 0 for Im j > 0 and so A(j,t) 

and therefore -A-i(j,t) are Herglotz-type functions. IO,11 
Accordingly 

the solution of (1) takes the form at(t) 
-A-i(j,t) = a + bj + 3; .I 

dj’ p(j’,t) 

j’(j’ -.i) 
i- 

c 

Ri(t) 
j,(t)- j (4) 

-al i 

with the properties that 

b = lim -A-)jtt) 2 0. 

j-+03 

and 

(5) 

Ri(t) 2 0, t> 0 (6) 

To see whether “CDD poles” at j = ji (t) should be present, consider 

A(j, t ) in the region of j between the branch point Qc(t) and the pole 

position cy (t ). From (I), we see that the pole contribution is always 

real and positive while the second term representing the cut contribution 

is real and negative. Therefore, if C = 0 and the cut contribution. is 
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sufficiently strong to make A(j, t) negative near the branch point (YC(t ) 

then there must be a zero, say, at j = j,(t), somewhere between rut(t) 

and cy (t ). A plot of A(j, t ) against j, in this case, is shown in Fig. 2. 

By normalizing (4) so that A(j, t) has a pole at j = cr(t) with the 

residue [ ig(t )I 2 we can eliminate a and b and write 

ace) 
-A-i(j,t) _ j-;(t) + [j-;(t)1 2 

I 
dj’ p(j’, t) 

g (t) -co (j’-j)[j’-a(t)1 2 

+ 
R*(t) [j-@(t) 1 2 

[j,(t) -jl [j,(t)-al 2 
(7) 

where we have kept the nearby zero term explicitly. In particular 

the residue condition yields 

R1 

lji(t)-cu(t)l 2 
(8 ) 

the right-hand side of which is positive definite from the Herglotz 

r- -r -~ ELI nronertv f5) so that we obtain the inequalitv relation 

Rl(t) 

I 
-1 

dj p(j,t) 
2 + (9 ) 

[ j - dt )I [j,(t)- Q(t)1 2 

The inequality (9) ensures that the solution given by (9) has no other 

poles beyond the one at j = c(t). The equality holds when A(j, t) 

decreases less fast than J’ asymptotically. 

Since j,(t) lies between a(t) and o,(t) it follows that j,(O) = ~(0) 

= cd (0) = 1. 
C 

If j,(t) is analytic at t = 0 bs well as a(t ) 1 SO that 
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jl(t)=i+j;(0)t+... and if Rf(0) is finite then we can deduce from 

(9) that 

g(t) < 0 (t) ($0) 
t-4 

so that g(t) vanishes linearly at t = 0. This result is to be contrasted 

with Abarbanel’s result, 
3 which follows from (9) in the absence of the 

CDD zero term, that 

g(t) < 0 [(cr-cYc+l = ocdt ) (11) 
t+o 

Unfortunately, the simple solution we have obtained with a single 

CDD zero is not acceptable as we now show. By taking c(t) = 1-t c’t 

so that p(j, t) = p/Zc? from (3), Eq. (7) can be simply integrated to give 

-A-'(j,t) =g {i + $$$ [A 

C 

g2(t)Ri(t)(j-c) 
f 

[j,(t)-j 1 [j,(t)-&)1 2 
(12) 

We can now see that our solution differs from Abarbane11s3 only by the 

addition of the CDD pole term. It also suffers from the same disease 

as Abarbanel’s solution in that the presence of Pn (a-~~) in (12) leads 

to a fixed t-singularity of A(j, t ) at t = 0. This we know cannot be 

allowed because of the analyticity properties of the Froissart-Gribov 

representation. 

If the logarithmic singularity is to be cancelled in (12) it is clear 

that the CDD term must be involved because of the j-dependence of the 
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the coefficient of 1n(c!-(YC). To see whether a cancellation is possible 

we write 

Rf(j-c) 

(j,-j)(ji-a)2 
=R 

1 1 
1 (.i,-j)(j,-a) - (j -aJ2 1 (13) 

1 

Since j, -cr<O, Ri> OandjI - a it is clear that the logarithmic can 

be cancelled, so that A(j, t) is analytic at t = 0 if 

Ri + - In(cu-cu ) 
R1 1 

(j,-a) C’ 
C- 

(j,-a)2 tn 

n = 1,2, ,.. 

which requires that 

j,(t)-a(t)+ - tnin(G-ac) 
t-o 

and 

(46) 

To avoid too dramatic behavior for RI we take n = 1. If we now 

return to Eq. (9), we see that we can no longer deduce (10) but instead 

obtain only (Ii). However I if g(t ) - fl we encounter another 
t-to 

difficulty. The two -particle/two Pomeranchukon amplitude N(j, t ) 

(the familiar fixed-pole residue) is obtained from A(j, t ) by f’ 2’ 7 

N(j,t) = No(j,t) x A(j,t) (17) 

where No(j, t ) is regular at j = cuc(t ). No(j, t) enables us to introduce a 

finite two particle/ Pomeranchukon vertex function so that the Pomeranchukon 

can give a finite contribution to the four-particle amplitude f(j,t) through 
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the relationi’ 2’ 7 

f(j,t) = Ni A + E(j,t) 
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(18) 

E(j, t) also being regular at j = cc. We therefore have to take 

No(cu,t) - [g(t)) -id t -+ (19) 
t-0 

and this introduces an illegal singularity at t = 0 in N(j, t ). Rather than 

resort to n = 2 in (14) we go on to consider the possibility of further 

CDD zeroes in A(j, t). 

If C = 0 in (1) then it is clear from Fig. 2 that there cannot be 

more than one CDD zero. However, if C > 0 then the situation shown 

in Fig. 3 is possible. Now a second CDD zero, to the right of a(t), 

is possible (note that ImA # 0 for j < (Y and so a real zero to the left c 

of (Y is not possible). In this case (9) becomes 
c -1 

dj 
p(j,t) R1 R 

2+ 
+ 2 

I 
(20) 

[ j-a@)1 (j,-u)’ (j2-aJ2 

Now we are free to choose R1. and j, to satisfy ( 14) with n=i and still 

let j 2(t ) be analytic at t =0 with j 2(O) = 1 so that 

j2-a4 t 
t-o 

and (10) still holds. We now have that 

-g’(t)A-i(j,t) r~ [j-c(t)] 
g2R2 

1 
t-to (j 2-a)2 

(21) 

(22) 

and since the four -particle amplitude f(j, t) satisfies (18 ) we have 
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f(j,t) 4 gm2(t)A(j,t) 
t+o 
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(23) 

and it is clear that f(j, t) still contains a pole at t = 0. 

We conclude therefore that a satisfactory partial-wave amplitude 

can be constructed containing a Pomeranchukon pole, a two-Pomeranchukon 

cut and two CDD zeroes. - It is interesting to note that this is precisely 

the structure found by Cardy and White* on the basis of a Reggeon 

calculus model. In their notation 

PO f j-j, Z. G j-j, 

so that PO contains the “bare” Pomeranchukon trajectory, while Z. results 

directly from the singular potential. The reconstruction of the two 

particle/two Pomeranchukon and four particle amplitudes from the 

four-Pomeranchukon amplitude can be followed through in an analagous 

way to that given in Ref. 8, leading to the important conclusion that a 

zero structure of the sort we have considered leads directly to the 

factorization of total cross sections to 0 [ 1 

(Ins l2 
1. 

To see how this factorization comes about and also to compare 

with Bronzan’s solutions we briefly recall the analysis of Ref. 8. The 

crucial part of the analysis is the introduction of the’bne-Pomeranchukon 

irreducible” amplitude A 
I 

which does not contain the Pomeranchukon 

pole but satisfies the unitarity relation (2). It follows then that AI 

can be written in the form 
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AI = I 

fi - & In(j-cut) 

where x is regular at j = LY 
C’ 
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(25) 

A(j,t) = 
1 

Z-C2/Po- & 
(26) 

fn(j-cuc) 

where 5 is regular at j = ac and is essentially the three Pomeranchukon 

vertex before two Pomeranchukon iterations are considered. The four- 

particle amplitude fab(j, t) for the scattering of two particles a and b 

then takes the form 

“gaEb 
fab(j,t) = G +pf 

Ga+za 5 PO)Tcb +2zb m PO) 
(27) 

0 ii- In2/P,- & ln(j-ocyC) 

where E does not contain PO and is regular at j = ac. ga b and Ta b 

are, respectively, two-particle/ Pomeranchukon and two particle/two 

Pomeranchukon vertex functions, before two-Pomeranchukon iteration. 

Ea and zb are what in general prevents the two-Pomeranchukon cut con- 

tribution in (27) from factorizing. 

It follows immediately from (26) that A(j,t) has one CDD zero at 

PO = 0. Since PO contains the Pomeranchukon trajectory function 

before iterations of the two Pomeranchukon cut are added it mustbe 

analytic at t = 0 and therefore has to be our second CDD zero j,(t). 

If (26) contains a second CDD zero whose trajectory function is singular 

at t = 0, as required by (15), then it must correspond to a pole of s 
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rather than of g2. This is what was attributed to the singular nature of 

the two Pomeranchukon interaction potential in Ref.8. If 5 -p 0 when 

t + 0, it follows from (25) that 

fab(.i, O)4taiZb 
1 + G2pIzrrcu’ 

(PO - C2/ii) (PO&52) 
In (j-ac) + . . . 1 

(28) 

so that za and gb do not contribute to the leading contribution of the two 

Pomeranchukon cut at t = 0 and factorization holds. If5+0 thenP 
t-o 

0 

will not play the role required of j,(t) in (20), (21), and (10). 

It seems therefore that (28) will follow directly from the CDD 

zero structure we have argued for. The above argument is, of course, 

based on the existence of the one-Pomeranchukon irreducible amplitude 

AI’ This is automatic in the Reggeon calculus but may have a more 

general basis. 

It is interesting to note that Bronzan’l argued against single order 

zeroes in A(j,t) essentially on the basis that such zeroes would have to be 

cancelled in fab(j, t ) (to give a finite Pomeranchukon pole residue) by 

single order poles in No’, that is the numerator of the last term in 

(25). He argued that because of (17) this would lead to illegal square 

root branch points in the two particle/two Pomeranchukon amplitude. 

However, (25) illustrates how a single order zero (PO) can be allowed. 

There is a second order pole in the relevant numerator and the resulting 

pole is explicitly cancelled by the addition of the term gagb/ PO. 

Second order zeroes of the type considered by Bronzan destroy the 
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Herglotz property we have based our analysis on. This is closely 

linked with the presence of further “ghost” poles in A(j, t) besides that 

at j = alp(t). While there is nothing in principle against introducing such 

poles (provided they lie to the left of j = 1 at t = 0) our use of the Herglotz 

property does enable us to avoid them in a simple way. Finally we note 

that our discussion of the cancellation of the logarithm in (12) using (14) 

is incomplete in the sense that we have only discussed leading order 

effects. We have not discussed (as Bronzan does) the complete elimination 

of any singularity at t= 0, with a completely self-consistent form for 

Qp’t 1. It seems likely that this can be done by an iteration process 

similar to that used by Bronzan. However, it also seems likely that we 

cannot really avoid the weak fixed cut at j =i which his arguments imply 

will emerge from this process. We have tacitly assumed we can ignore 

this effect in writing equation (1). 
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